
ARCHITECTURAL DESIGN OF E1  
DISTRIBUTED OPERATING SYSTEM 

 
Leonid Ryzhik, Anton Burtsev  

{leonid, anton}@e1os.org 
 
 
 
 
 
 
 
 

ABSTRACT 
 
Modern distributed operating systems provide users with transparent access to all resources of the 

computer network by means of distributed object abstraction. The access reliability and efficiency of such 
systems are determined by the internal implementation of the given abstraction. The existing architectures 
are based either on the centralized storage of the object state in one of network nodes, or on a state 
distribution among several nodes by means of distributed shared memory. The indicated approaches do not 
take into account semantics of a specific object. As a result, for the majority of objects the access efficiency 
in the distributed environment is considerably lower, than in a local case. 

This paper presents the alternative distributed operating system architecture based on the concept of 
replication of distributed objects. A complete or partial copy of distributed object’s state is placed in each 
node where the object is used. Copy coherence is ensured by replication algorithms. For each object the most 
efficient access algorithm, taking its semantics into account, can be applied. All E1 subsystems are designed 
to support replication, which makes E1 a convenient platform for developing reliable distributed 
applications. 

Introduction 

In modern operating systems distributed computations support is usually limited to network 
protocol stack. However, construction of distributed applications requires more advanced 
communication facilities such as remote procedure calls, distributed synchronization primitives and 
distributed shared memory. The growing complexity of software systems necessitates a new 
software layer, providing developers with efficient, reliable and secure access to network resources.  

Currently, this layer is most frequently implemented by middleware systems. Middleware is 
defined as a layer of software above the operating system but below the application program that 
provides a common programming abstraction across a distributed system. For example, in 
distributed data processing systems, component-oriented middleware, which supports the common 
object model in different network nodes, is widely used [35, 33, 53, 50]. 

The alternative approach consists in integrating distributed computations support into the 
operating system. Nowadays, the advanced communication facilities have become an essential 
software component like file system or inter-process communication facilities. Operating system -
level implementation allows the construction of the most effective architecture, supporting the 
unified set of primitives for access to local and remote resources. 

Distributed operating system is a software platform providing applications with common 
execution environment within distributed system, including means of access to hardware and 
software resources of the system and application communication facilities.  

 
This paper presents architectural design of E1 distributed operating system. Such operating 

system should meet three major requirements: 



1. Convenient interface. Due to the nature of distributed systems, it is more difficult for users and 
software developers to work in them, than in centralized ones. Among the complexity factors 
one can name: heterogeneity of access to local and remote resources, high probability of faults, 
asynchronous communication environment, non-uniform memory access. To enable 
computations in such an environment, the distributed operating system must support a set of 
abstractions, isolating developers from the listed complexities and providing a convenient 
interface to all the resources of a distributed system. 

2. Efficiency. Operating system efficiency is determined mainly by temporal characteristics of 
access to various resources. In the distributed environment network latencies become a 
productivity bottleneck. Therefore distributed operating system should minimize the influence 
of remote communication on software operation. 

3. Reliability. In the absence of fault tolerance mechanisms, a single node or network connection 
failure can put the whole distributed system out of order and cause loss of data. Therefore the 
distributed operating system should provide reliable computations support, including redundant 
storage and execution, as well as fault recovery. 

1. Е1 concepts 

This section presents our approach to implementation of the above requirements. 
 

Convenient interface 
To provide applications with convenient interface to all computer network resources, Е1 

implements a Single System Image abstraction, which implies that for application software the 
distributed system looks like a centralized one. This property allows a developer to ignore the 
physical layout of resources but instead focus on the functionality they provide. 

Implementation of single system image in Е1 is based on abstraction of the distributed 
object. Distributed objects encapsulate state and functionality of all operating system components. 
Each object exposes a set of well defined interfaces that can be invoked by other objects. Objects 
are globally accessible by their interfaces from all nodes of a system. 

Both operating system components and application software relies on a single E1 object 
model, i.e. Е1 applications are constructed as a collection of distributed objects. To an application 
programmer the computer network looks and feels like a single virtual computer, with its software 
structured like a set of objects. Access to the hardware resources, as well as the interaction between 
software components are reduced to invoking methods on the corresponding objects. 
 
Efficiency 

The distributed software systems consist of interacting modules located in different network 
nodes. As the operations, performed in each node, often depend on instructions and data received 
from remote components, the communication latencies eventually affect the performance of the 
entire system. Two popular techniques, used to overcome this effect are: replacing remote 
communication by local operations, and removing remote communication beyond the critical 
execution paths. Replacing remote communication by a local interaction implies that the state of a 
server object is cached in the client nodes. In this case read operations are performed locally on the 
cached copy of an object. Modifications can sometimes also be applied locally with the subsequent 
delayed delivery of changes to a server. Removing the remote communication beyond the critical 
paths allows the reduction of the time spent by main computational threads waiting for remote 
messages. For this purpose additional helper threads, that speculatively obtain the data, required by 
main computations, are used.  



Object replication constitutes a generalization of the indicated approaches. In Е1 a 
complete or partial copy of a distributed object’s state can be placed in each node where the object 
is used. The state of an object is synchronized (replicated) among nodes. Each invocation of an 
object method is handled by its replica in the node, where the call originates. Communication with 
the remote replicas is involved only when required by the replication protocol, for example, when it 
is necessary to obtain a missing part of an object state. 

Thus, the distributed communication in Е1 is moved inside the distributed object. Hence, 
efficiency of access to an object is determined by efficiency of the replication strategy. Obviously, 
there is no single replication strategy, equally effective for all types of objects. Therefore Е1 does 
not impose the use of any specific strategy or a collection of strategies. Instead, E1 provides 
services and tools to simplify the construction of replicated objects. In effect, for each class of 
objects the most efficient access algorithm, which takes into account its semantics, can be applied. 
Such algorithm can be either selected from a set of existing replication strategies, or designed 
specifically for the given class of objects. 
 
Reliability 

E1 provides support for reliable distributed applications development through replication 
and persistence. Replication can appear not only as a means of efficient access to an object, but also 
as a redundancy mechanism. For example, by supporting consistent copies of an object in n 
different nodes, it is possible to tolerate up to n-1 node crashes [46]. Thus, replication utilizes 
hardware redundancy of the distributed system to provide reliable execution of applications.  

Persistence is the ability of the objects to exist for unlimited time, irrespectively of whether 
a system functions continuously. For this purpose a copy of an object is kept in nonvolatile storage 
and is being synchronized with an active copy. The stored object state is always correct, even in the 
face of hardware failures1. 

 
Another important principle underlying the Е1 architecture is component model support. 

By following this principle, the replicated objects model has been extended to a component model. 
Such architecture makes Е1 a convenient platform for the development of distributed applications. 

Before proceeding to the discussion of the use of component models in distributed operating 
systems, we will briefly outline the concepts underlying the component software development 
paradigm. 

Component-oriented approach to software development is based on the idea of constructing 
software systems from prefabricated reusable components. Components should be independently 
deployable, i.e. a component can be used by a third party, which was not engaged in design and 
implementation of the given component. 

Software component is defined as a unit of composition with contractually specified 
interfaces and explicit context dependencies only [54]. Components inherit essential concepts from 
object-oriented programming: encapsulation, polymorphism and availability through interfaces. 
However, components have additional properties not inherent to objects in object-oriented 
programming languages. Unlike objects, components are software products. In particular, it means 
that components can be developed and used independently by different sites. Component is an 
executable unit, rather than a programming language entity. Therefore, implementation inheritance 
is not supported for components. Component reuse is achieved by composition and aggregation. For 
two components to be interoperable, it is sufficient that they fit the requirements of a single 
component model, whether they were developed using the same or different programming 
languages. Components are characterized by higher degree of independence, than objects, and 

                                                 
1 As for now, support for persistence in E1 is not designed in sufficient details. Therefore, it 

is not covered in this paper. 



consequently, they have coarser granularity. As a rule, a component is constructed from several 
programming language objects. 

The component model specifies the environment in which components operate, including: 
protected method invocation mechanism, naming service, late binding support, garbage collection 
service, component development tools, as well as a number of additional services, e.g. persistence, 
transactions, replication, object trading, etc. (see, for example, [36]). 

Extending a component model across the network, yields a convenient environment for 
distributed applications development which, besides other advantages of component-oriented 
architecture, provides network transparency, i.e., the components, located in different nodes, can 
invoke each other the same way as in local interaction. This approach is implemented by 
middleware systems, e.g. COM [33], Corba [35], EJB [53]. 

It is remarkable that modern distributed operating systems often provide abstractions and 
services resembling distributed component models of middleware systems. Apparently, it can be 
explained by the fact that both classes of systems are intended to serve as software platforms for 
distributed computing. Like middleware systems, distributed operating systems generally provide 
unified access to distributed system resources by means of object-oriented interface. In some 
implementations, objects are first-class citizens ([55], [21], [11]) while other systems support more 
simple primitives, e.g. message ports in Mach [4] and Chorus [43] or portals in Opal [10] above 
which the notion of the object is introduced by the object-oriented application run-time. Distributed 
operating systems provide a number of services for maintaining distributed objects, which are quite 
similar to key component services. First of all, it is a protected interaction mechanism, supporting 
the uniform invocation of object methods from any network node, provided that the caller possesses 
sufficient capabilities. Besides that, distributed operating systems include global naming services 
that enable binding to an object by its unique identifier. Some systems also support persistence of 
objects [11, 10, 12, 49, 15]. 

Despite indicated similarities, today’s distributed operating systems do not provide valid 
component models. In these systems object abstraction serves primarily as a convenient means of 
interprocess communication, rather than application structuring paradigm. Both operating system 
services and application software are structured as a set of server processes that expose entry points 
for communication with other programs. Through an entry point a server exports operations for 
access to a certain resource or a group of resources. These operations are invoked with object 
semantics. Client specifies the identifier of an entry point, plus the required operation code and a 
parameter set. In response to a call, a server can return one or more values. Thus an object serves 
mainly as a communication abstraction. 

At the same time, component software development paradigm regards objects as 
independent software entities with private state, explicit context dependencies and contractually 
specified functionality. Such notion of components doesn’t fit the framework of modern distributed 
operating systems. Implementing a component model on top of these systems would require an 
intermediate software layer, similar to traditional middleware. 

We believe that implementation of a distributed component model at the operating system 
level has potential advantages over the middleware approach. The designer of a component-oriented 
middleware inevitably arrives at the implementation of some virtual machine over the operating 
system abstractions, which, naturally, results in significantly reduced performance. In order to get 
rid of this overhead, we suggest that component model support should be initially designed into 
operating system. Following this approach, E1 implements a distributed component model, based 
on the abstraction of replicated object. 

On the low level, the E1 component model relies on the execution primitives, which are 
essentially different from the ones used by the conventional operating systems. The primary 
execution abstraction in the conventional systems is process or task, representing an instance of a 
program, loaded into memory. Each task runs in a separate address space. Within a task several 



execution threads can exist. This model does not appropriately support interacting objects of 
medium granularity [18]. Therefore, we abandon it for the new execution model, tailored for 
component systems. In Е1 all executable code and data belong to objects. All objects reside within a 
single 64-bit address space. Е1 supports the migrating threads model [18], in which execution of a 
thread, invoking an object method, is transferred to the context of the invoked object. Migrating 
threads allow the departure from a server-style object design, where an object runs one or several 
threads to process incoming method invocations. 

Another feature of Е1 component model is that it is based on replicated objects. The ability 
to replicate is a generic property of all objects. Е1 provides extensive support for replication, 
including flexible replica communication service and extensible library of replication strategies. 

Besides these services, E1 component model provides: 
• Protected interaction mechanism, supporting the transparent invocation of object methods 

from any network node. In Е1 all invocations are processed by the local replica of an object. 
Legitimacy of each call is verified by the distributed Access Control Server (ACS). 

• Class Repository and Dynamic Class Loader. 
• Global Naming Service, providing mapping of a unique object identifier to one ore more 

contact points of a given object. 
• Garbage collection system, which detects and destroys unused object replicas on the basis of 

reference graph analysis. 
• Support for persistence, which provides object lifetime control, based on reliable storage of 

a consistent object state in nonvolatile memory. 
• Component development tools, including Е1 Interface Definition Language compiler and 

Replication Strategies Compiler. 
 
Since both operating system services and application software are developed within the 

framework of a single Е1 component model, the model has to be highly flexible, while introducing 
minimal overhead. These requirements have guided the design of Е1 component services, presented 
in the following sections of this paper. 

2. Comparison with other systems 

Modern distributed operating systems can be divided into two classes, based on the method 
of access to distributed system resources: client/server systems and distributed shared memory 
(DSM) -based systems. Е1 implements a third approach, based on replicated objects. This section 
presents a brief characteristic of existing architectures and compares them to Е1. 

In client/server operating systems, all resources of the distributed system are represented by 
objects, which are uniformly accessible from all nodes. However, objects are not physically 
distributed. Each object is located in one of system nodes under control of a server process. Global 
availability of objects is provided by the remote method invocation mechanism, which hides the 
distributed nature of interactions from the client. Two well-known examples of client/server 
distributed operating systems are Mach [1] and Chorus [43]. The advantage of client/server 
architecture is its relative simplicity. However, it does not provide a locality of access to resources 
and, therefore, does not eliminate the influence of network latencies on the performance of the 
system. Another disadvantage of client/server architecture is the lack of reliability mechanisms. 
Failure of a single node can cause a wave of software failures all over the system, a phenomenon 
known as the "domino effect”. Furthermore, client/server architecture lacks scalability, as it does 
not support load balancing among nodes. 

DSM-based operating systems [10, 21, 13, 11] take essentially different approach to 
implement the distributed object model. The main idea underlying these systems is to emulate 



common memory in the distributed environment. The state and executable code of each object are 
globally accessible from each node by their virtual addresses. On the first access to an object, the 
operating system creates local copies of its pages. The copies are synchronized using memory 
coherence algorithms [29]. These algorithms can be thought of as universal replication strategies, 
applicable to any types of objects. Unfortunately, they often fail to provide acceptable efficiency of 
access. To implement efficient access to an object the replication algorithm should take into account 
its semantics. Algorithms, working on the level of virtual memory pages are obviously unaware of 
object semantics. Thus, we observe a natural trade-off between generality and efficiency of the 
replication strategy. 

To illustrate inefficiency of distributed shared memory, let us consider the hypothetical 
Message Queue object. Objects in different network nodes can post to and receive messages from 
queue. Each client of the Message Queue receives all messages, which have been posted to it, so 
that in each node the identical set of messages is eventually obtained. However, the order, in which 
messages are delivered in different nodes, should not necessarily be identical – the only requirement 
is that causal message ordering is preserved [27]. Let us assume that Message Queue is 
implemented as a simple unidirectional list of small fixed-size entries. Let us also assume that 
shared access to Message Queue is provided by DSM algorithm [29]. Posting a message to a queue, 
then, requires exclusive locking of at least one object page (containing the pointer to the tail of the 
queue). To retrieve a message from the queue, one must acquire shared lock on at least one object 
page. Each locking operation requires broadcasting a message to all nodes, containing a copy of the 
queue, and receiving confirmation. In case of intensive use of the queue, when messages are posted 
and retrieved simultaneously from different nodes, each operation requires synchronization of the 
local object copy with one or several remote copies. In other words, each reference to the queue 
requires exchange of several broadcast and unicast messages with remote nodes. 

Since memory coherence algorithms fail to take into account semantics and granularity of 
the performed operations, there is no way to essentially improve the efficiency of access to Message 
Queue within the framework of DSM-based approach. On the other hand, existing replication 
algorithms [26, 19] are capable of providing local execution of both read and write operations, 
while preserving causal message delivery ordering. Messages are received from and posted to a 
local copy of the queue. Delivery of messages to remote replicas is performed in asynchronous 
manner. Causal ordering is achieved with the help of logical timestamps, attached to each message 
[27]. This example illustrates, how replication strategy, which exploits object’s specific properties, 
can be considerably more efficient, than memory coherence algorithm. 

In summary, both client/server and DSM-based systems use universal methods to access 
objects in distributed environment (remote methods invocation and memory coherence algorithms, 
correspondingly). These methods have limited efficiency, as they do not take into account 
semantics of a particular object. 

In E1, the efficient and reliable access to each object is ensured by selecting replication 
strategy on the basis of the object’s semantics. Of course, there is no need to design special 
replication protocols for each class of objects. E1 includes extensible library of replication 
strategies, from which one can select efficient strategy for virtually any type of objects. For 
example, the above-mentioned Message Queue replication algorithm is a variant of active 
replication, which can be effectively applied to a broad class of objects (see Section 6.1). 

Two other examples of standard E1 replication strategies are client/server replication and 
memory object replication. These strategies reproduce the types of access to distributed objects used 
respectively, by client/server and DSM-based operating systems. Thus, Е1 can be considered a 
generalization of these architectures. 



3. Е1 overview 

3.1. Distributed objects 
Distributed objects are first-class citizens in E1. All operating system services, as well as 

application software are constructed from distributed objects. 
All objects reside in a single virtual 64-bit address space (its structure will be discussed in 

Section 4.1). Each object exposes one or several interfaces consisting of a set of methods. Each 
distributed object interface is identified by its unique 64-bit address. Any object, knowing this 
address, can invoke methods of the interface from any network node. All interfaces in Е1 contain a 
standard method of navigation between the interfaces of the same distributed object. 

Objects in Е1 can be physically distributed, i.e. keeping partial or complete copies of the 
state in several nodes. The copy of an object’s state in one of the system nodes is called distributed 
object replica. The distribution of the state among replicas and replica synchronization is called 
object replication. 

The E1 distributed object architecture aims to separate an object’s semantics and replication 
strategy. An object developer implements only the object’s semantics or functionality in local (non-
replicated) cases, while a replication strategy supplier implements the replication algorithm. 
Replication strategy can be universal, i.e. applicable to objects of various classes. At the same time, 
objects of the same class can be replicated using different strategies. 

To achieve the goal above, we put forward the distributed object architecture, in which 
object semantics and replication strategy are implemented by separate structural units. In E1, 
distributed objects are composed of local objects. A local object is limited to one node of the 
distributed system. Note that a similar distributed object architecture has been implemented by 
Globe object-oriented middleware [50]. 

The E1 local object resembles the structure of a C++ object [52]. It consists of a fixed-size 
section, containing data members and pointers to interfaces (method tables), and the data structures, 
dynamically allocated by the object from heap. In terms of C++, the interfaces of the local object 
are purely virtual base classes, from which the object is inherited. A similar approach is taken by 
COM [33]. 

The distributed object architecture is shown in Figure 1. In a trivial case when the 
distributed object has only one replica (Figure 1a), it is identified with a single local object, 
semantics object. Semantics object contains the distributed object state, exposes the distributed 
object interfaces and implements its functionality. 

When the reference on the distributed object is created in the node, where there is no replica 
of the given object yet, a new replica is created in this node. The structure of distributed object with 
several replicas is shown in Figure 1b. A copy of the semantics object is placed in each node, where 
the distributed object is represented. To ensure global accessibility of the distributed object 
interfaces by their virtual addresses, semantics objects are placed to the same virtual memory 
location in all nodes. The distributed object integrity is maintained by replication objects, 
complementing the semantics objects in each node. Replication objects implement the distributed 
object replication protocol. Replication object substitutes implementations of semantics object 
interfaces by its own implementations, which allows it to process the distributed object method 
invocations2. While processing the invocation, replication object can refer to the semantics object to 
execute necessary operations over the local object state, as well as communicate with remote 
replication objects to perform synchronization and remote execution of operations. Interface 
substitution is transparent for other objects and can be thought of as aggregation of the semantics 
object by the replication object. Such architecture eliminates the overhead of supporting replication 
objects for the distributed objects that are not actually distributed, i.e. have only one replica. If an 
                                                 
2 Detailed discussion of interface substitution technique lies beyond the scope of this paper 



object with several replicas eventually remains with only one replica, its replication object is 
destroyed. 

 

 
(a) 
 

 
(b) 

Figure 1. The distributed object architecture. a. distributed object with one 
replica; b. distributed object with several replicas 

 
The presented distributed object architecture has two important advantages. First of all, it 

effectively separates the object’s semantics and replication strategy. Secondly, it does not impose 
any essential limitations on replication algorithms used. Hence, for each object the access protocol, 
providing high efficiency, while preserving required reliability guarantees, can be applied. 

 



3.2. Class objects 
Classes of local objects in E1 are described by objects of the special type – class objects. 

Encapsulation of class properties by objects allows implementing dynamic class loading. For the 
same purpose serve class factories in COM [33] and Corba [37]. 

Class object stores interface implementations and exposes methods for creating and 
destroying instances of the given class. 

Classes are stored in a single system-wide Class Repository, which guarantees the use of 
coherent versions of class objects in different nodes. Before creating class instances, a 
corresponding class object must be loaded from Repository to memory. 

There is no concept of distributed object classes in E1. Instead, a distributed object can be 
identified by the class of its semantics object, since it is the semantics object that encapsulates the 
distributed object’s functionality. 

 

3.3. Е1 architecture 
Figure 2 shows a generalized Е1 architecture. E1 consists of a microkernel and a set of 

distributed objects acting at the user level. The microkernel supports a minimal set of primitives that 
are necessary for operating system construction, such as: address spaces, threads, IPC and interrupts 
dispatching. All operating system and application functionality is implemented by objects. 

 

 

Figure 2. Generalized Е1 architecture 
 
Microkernel-based design has a number of advantages. First, it is potentially more reliable 

than conventional monolithic architecture, as it allows the major part of operating system 
functionality to be moved beyond the privileged kernel. Second, microkernel implements a flexible 
set of primitives, providing a high level of hardware abstraction, while imposing little or no 
limitations on operating system architecture. Therefore, building an operating system on top of an 
existing microkernel is significantly easier than developing from scratch. Besides, since operating 
system services run at user level, rather than inside the kernel, it is possible to replace or update 
certain services at run-time, or even start several versions of a service simultaneously. Third, and 
finally, some of the existing microkernels achieve an IPC performance an order of magnitude over 
monolithic kernels [32]. Among these are microkernels of the L4 family [31, 14, 39, 25]. For 



object-oriented operating systems, like E1, it is extremely important to minimize the latency of 
control transfer between address spaces; therefore, L4 has been selected as the microkernel of Е1. 

The E1 system components can be divided into three groups, represented with grey bars in 
Figure 2: 

1. Objects, implementing the E1 execution model and memory management. 
2. Component model support. 
3. Replication support (“Group RPC” in Figure 2). 

4. Object interaction and protection 

In order to perform useful operations, objects interact by means of method calls. To provide 
safe execution of applications, it is necessary to ensure that object interaction is governed by some 
precisely defined access control policy. 

The Е1 protection model is based on three assumptions: 
1) Object methods have no immediate access to the internal state of other objects (object 

isolation requirement). 
2) Objects can interact only by method calls. 
3) Method calls are monitored by the operating system, which validates each call within 

effective access control policy. 
These assumptions are provided, accordingly, by three mechanisms: protection domains, 

crossdomain calls and access control mechanism. This section describes domains and 
crossdomain calls, while access control mechanism will be discussed in Section 5. 

 

4.1. Protection Domains 
Operating system protection model has to be based on facilities provided by the underlying 

hardware platform, primarily, virtual memory mechanisms in modern microprocessors. Therefore, 
geared towards object protection is closely related to virtual memory organization. 

In Е1 all objects reside in a single virtual address space. Object interfaces are invoked 
directly by their virtual addresses, just as in C++ methods are invoked through the pointer to an 
object. The major advantage of such a virtual memory organization is a convenient programming 
model, which greatly simplifies the communication between objects. A single E1 address space 
spans the whole distributed system. Hence, all objects in the system are accessible by their unique 
virtual addresses from any network node. 

The 4-gigabyte address space of modern 32-bit processors is, obviously, insufficient for 
holding all code and data of the distributed system. Therefore, single address space operating 
system (SASOS), like E1, requires a hardware platform with wide virtual address space.  

Generally speaking, the Е1 distributed object model could be implemented within the 
traditional private address space approach. In this case, smart pointers could be used to reference 
objects beyond the local address space. However, the single address space approach results in a 
simpler and easier-to-use architecture. Further analyzes of SASOS advantages can be found, for 
example, in [10, 22]. 

Let us return to the problem of distributed objects protection. The Е1 protection model is 
based on object isolation requirement. According to that, the object’s state is not directly accessible 
to other objects. To achieve such kind of isolation within a single address space, it is necessary to 
place each object into a separate protection context, so that virtual memory outside this context is 
unavailable to object methods. Although this scheme provides correct object isolation, it introduces 
a significant overhead. First, since memory management units of modern processors operate at page 
granularity, protection context can consist of an integral number of pages only, which results in 



extremely inefficient use of physical memory, especially in the case of small objects. Secondly, 
within the outlined approach every method invocation results in protection context switch, which 
requires a number of additional CPU cycles. During intensive object interaction context switching 
would consume a significant part of CPU time. 

In order to provide effective object isolation in E1, we introduce the notion of protection 
domain, offering a trade-off between efficiency and safety of interaction. Protection domain 
represents a part of a single virtual address space, containing one or several distributed objects. 
Each object in E1 belongs to exactly one domain.  Associated to each domain is a separate 
protection context, isolating internal domain objects from the other objects in the system. However, 
objects inside domain are not protected from each other. Intradomain method invocations do not 
require the protection context switch.  

While arranging objects in domains, one must take into account the following factors: 
• placing objects in different domains protects them from accidental or deliberate attempts 

of unauthorized access; 
• method invocations within domain are more efficient than crossdomain calls; 
• objects use physical memory more efficiently inside a common domain, than when 

placed in separate domains; 
Due to the above conditions, one should place intensively communicating objects which 

jointly implement some functionality to common domain. 
Domains provide global isolation of objects within the framework of a distributed system. If 

the object has several replicas, then in every node its replica resides in the same domain and at the 
same memory address. Therefore, if two objects are isolated from each other, i.e. reside in different 
domains, then their replicas will be placed in different domains in all nodes. Like other Е1 
primitives, domains are distributed objects. A replica of each domain is placed in each node, where 
there is a replica of at least one object, belonging to this domain.  

 
4.2. Crossdomain calls 

Objects in Е1 interact via method calls. This type of communication is synchronous. Each 
call is accompanied by a set of input and output parameters, specified by the object developer by 
means of Interface Definition Language (IDL). 

In Е1 all method calls are executed by the local replica of the invoked object. In order to 
guarantee that such a replica will exist and will not be destroyed by the garbage collection system, 
one must create a reference on an object before using any of its methods (see Section 5.4). 

Object methods are invoked through a pointer to one of its interfaces. Since all objects in Е1 
are located in a single address space, this pointer is valid in any system node and in any protection 
domain.   

Within the domain boundaries, method calls work very similar to C++ language: arguments 
are placed in stack and registers, and the control is transferred to the address specified in the method 
table of an invoked object. 

Implementation of crossdomain calls is more complicated, although for the interacting 
objects the difference is transparent. An attempt to access an object outside the local domain 
triggers a page fault exception, handled by Crossdomain Adapter (CA), located in the same 
domain as the object where the exception occurs. The CA’s task is to prepare the stack, containing 
the invocation arguments, which will be mapped into the target domain and on which the method 
will be executed. All arguments (both passed by value and by reference) are copied directly to the 
new stack. Although crossdomain call mechanism does not explicitly support passing large data 
arrays without copying, a similar functionality can be achieved by passing pointers to objects, 
representing shared memory regions. 



Each node contains exactly one instance of CA, mapped to all domains. Thus, CA operates 
as a universal proxy object, handling all crossdomain calls in a system. To prepare the call stack, the 
CA needs to know the called method’s parameter types, which can be obtained from its class object 
through a special reflective interface.  

To avoid the creation of a separate stack segment for each crossdomain call, CA uses the 
stack that the calling thread was running on before the call. The top of this stack is aligned to page 
boundary and the resulting address is interpreted as the bottom of a new stack (see Figure 3), which 
is then mapped to a target domain, so that the content of the calling object’s stack is not accessible 
to the called object. 

 

Figure 3. Stack management during crossdomain call.  
 
Having created the call stack, the CA transfers control to the microkernel to complete the 

call. The kernel then refers to the Object Registry (see Section 5.1) for the validation of the caller’s 
capabilities to invoke the given operation, and finally maps the call stack to the target domain and 
transfers control to the called object. Return from crossdomain call occurs in a similar way, through 
the target domain CA. 

 

4.3. Threads 
The Е1 execution model is based on the migrating threads concept [18]. At any point in time 

each thread runs in the context of a specific object. During method invocation, execution of a thread 
is transferred to the target object. Thus, the thread is not permanently bound to any specific object 
or domain. As shown in [18], migrating threads are more appropriate for object-oriented 
environment, than traditional static threads.  

Migrating threads eliminate the need of starting a separate thread for processing each call or 
queuing calls for sequential processing. This results in increased efficiency of object interaction, as 
well as a simpler and more lightweight object architecture. 

To start a new thread, one specifies its initial object and method. While executing this 
method, thread can perform nested calls to other objects. The thread is terminated on return from 
the method, in the context of which it was started. 

If a thread performs an illegal operation while running in the context of some distributed 
object replica, this replica will be destroyed and the thread will return to the previous element in the 
stack of nested calls just like if it had completed execution of a method with an error code. 



Since in Е1, distributed object invocation is actually an invocation of its local replica, it does 
not cause the transfer of thread execution to a remote node. There is, however, one particular 
situation, when such transfer occurs. It is when the replication strategy requires migration of object 
replica between network nodes (see Section 6.1). The object state is then moved to the target node, 
along with all of its threads. After completing execution within the migrated object replica, threads 
return to their home nodes. 

Associated with each thread is an activation stack, which describes the sequence of nested 
calls, both intradomain and crossdomain, performed by the given thread. Each element of the 
activation stack stores the address of the object, which performed the invocation. For crossdomain 
calls, the activation stack also stores the processor context, i.e. a set of register values to be restored 
on return from the call. This information allows the thread to correctly return from method 
invocations. In addition, by placing special instructions to the elements of the activation stack, the 
operating system can control the thread’s behaviour, e.g. suspend it, transfer to remote node or 
terminate. Execution of these instructions is deferred until the thread returns from method 
invocation, having finished all possible modifications of an object’s state. 

5. Component services 

This section describes the Е1 services, which extend the distributed object model to a full-
featured component model. Among these are Object Registry, Access Control Server, Global 
Naming Server, and garbage collection system3. 

 

5.1. Object Registry 
Object Registry lies at the heart of the Е1 component model. It maintains the information 

about all local replicas of distributed objects, including their types, virtual addresses, host domain 
IDs and reference counting information. The Registry coordinates execution of such operations as 
creation and deletion of the distributed objects and their replicas, crossdomain calls and garbage 
collection. 

 
Creating and destroying objects 

Distributed objects in E1 are created by means of the CreateObject method, exposed by 
Object Registry. It accepts class name, target domain identifier and, optionally, the name of the 
replication strategy to be applied to the new object. CreateObject method performs the following 
sequence of operations: 

1. If the required class object does not exist in the target domain, it will be loaded from 
Class Repository. 

2. Calls the class object to create a semantics object. Since the new distributed object is 
represented only in one node, it does not require a replication object. 

3. Registers the new object in internal Object Registry data structures. The caller of 
CreateObject method obtains the first strong reference on a new object. 

4. Registers the new object in global naming system. 
5. Returns the pointer to one of the newly created object’s interfaces. 
Distributed object is automatically destroyed when all of its replicas turn to garbage (see 

Section 5.4). One can also force the destruction of an object by calling the DeleteObject method of 
Object Registry. 

 

                                                 
3 Detailed description of dynamic class loading mechanism lies beyond the scope of this paper 



Creating replicas of existing distributed objects 
The newly created distributed object consists of only one replica. Subsequently more 

replicas can be created and destroyed. Replica creation is initiated when a strong reference on a 
distributed object is created in the node where there is no replica of the given object yet (see Section 
5.4). Object Registry then performs the following sequence of operations: 

1. Obtains information about the object from the global naming system: its class name, 
contact points and replication strategy. 

2. Loads the class objects for semantics and replication objects to be created, from Class 
Repository to target domain. 

3. Creates a semantics object and the associated replication object. 
4. Initializes replication object with the list of contact points, required to execute a group 

join protocol. This protocol is a part of the replication strategy. 
 

Crossdomain calls validation 
At the time of crossdomain call, the microkernel refers to the Object Registry through an 

IAccessValidator interface to assure the existence of the invoked object’s replica in a local node, 
and also to validate the caller’s rights to perform the given operation. 

The Registry itself does not implement access control policy. Instead, for the verification of 
call legitimacy it refers to the Access Control Server, which will be discussed in the next section. 

To improve the efficiency of crossdomain communication, information on objects and rights 
can be cached by the microkernel, which avoids having to look up the Registry for each 
crossdomain call. In Figure 4 an optimized crossdomain call path is shown with red dashed line. 
Cache consistency is maintained by the Object Registry through the IAccessCache interface.  

 

 

Figure 4. Communication between microkernel and Object Registry during 
crossdomain call. The dashed line shows normal and optimized (red) crossdomain 
call path. 



 
Other important Object Registry functions – reference management and garbage collection 

are described in section 5.4. 
 

5.2. Access Control Server 
Access Control Server (ACS) is a distributed object, which enforces a single access control 

policy across the distributed system by verifying the legitimacy of each call. 
Selection of an operating system access control model is very challenging task. Having its 

own limitations and drawbacks, none of the existing protection models can be considered generally 
optimal. Therefore Е1 does not impose any specific access control policy to be implemented by 
ACS. Nor does it limit the ACS replication strategy or data structures used to store information on 
rights. However, the ACS must implement the IAccessControl interface, used by the Object 
Registry for crossdomain calls validation. The main method of the IAccessControl interface, namely 
ValidateAccess, confirms or denies the validity of a call, based on: the thread identifier, caller and 
callee identities, and the invoked method. 

ACS can also expose additional interfaces, depending on the particular access control model 
it implements. For example, ACS, implementing Take/Grant capability model [7, 8], can provide 
Take, Grant and Revoke methods, while emulation of UNIX access control list model would require 
methods like Chown and Chmod. 

Global fulfillment of access control rules is provided by the ACS replication strategy. For 
example, on capability revocation, corresponding notification must be delivered to all ACS replicas, 
which contain outdated information. The overhead introduced by ACS replication is one of the 
important factors to be considered when selecting an access control model. 

A variety of protection models can be implemented within the framework of the presented 
approach, including various capability [56, 20, 24, 7] and access control list (ACL) [42] models. It 
is also possible to select subjects and objects of the model in different ways. Some possible choices 
for objects are: distributed object, a single interface or even method. While for the role of subjects, 
one can use distributed object, protection domain or user. The last possibility is rather interesting. 
Until now, we have not introduced user abstraction in Е1. Nevertheless, the models in which rights 
belong to users or roles are in wide use today [44, 42]. In such models each thread operates on 
behalf of some user. Therefore, though the concept of users is not explicitly supported in Е1, it is 
possible to implement it at the ACS level by associating users with groups of threads. 

 

5.3. Global Naming Server 
The Global Name Server (GNS) implements a distributed object location protocol, which 

maps the object’s virtual address to the list of its contact points, i.e. network nodes, containing the 
object’s replicas. GNS is used by the Object Registry, on creation of a new distributed object replica 
in a local node. 

The choice of a specific object location algorithm, implemented by GNS, should be based 
on the scale of the system and on the frequency with which nodes join and leave it. For small 
systems a centralized protocol with one or several name servers is preferable. For large-scale 
systems with stable structures the hierarchy of domain servers [34] is usually used. While for highly 
dynamic systems decentralized naming protocols, e.g. [51], are most effective. 

 

5.4. Garbage collection 
The purpose of the Е1 garbage collection system is to detect and destroy unused distributed 

object replicas.  



In conventional operating systems there is normally no need for a separate garbage 
collection subsystem. Instead, every operating system component uses its own resource 
management mechanism, based on a simple reference counting. Such approach is easy to 
implement and it results in minimal overhead. However, in an asynchronous distributed 
environment, reference management becomes a substantially more complicated task [38]. In E1 it is 
further complicated by the possibility of having several object replicas in different nodes. Garbage 
collection in such systems requires sophisticated distributed algorithms and data structures. Since it 
is inefficient to design and implement them separately for each operating system component, E1 
provides a single garbage collection system for all distributed objects. 

Garbage collection in E1 is based on the analysis of a reference graph between distributed 
objects replicas. Two types of references correspond to two types of object interaction: local 
interaction between replicas of different distributed objects, and remote interaction between replicas 
of a single distributed object within its replication strategy. Correspondingly, there are local 
references between different distributed objects and remote references between replicas of one 
object. 

We will also distinguish weak and strong references. Weak reference is simply a pointer to 
an interface of an object or RPC-pointer to one or several remote replicas, used to perform local and 
remote invocations, respectively. Weak references are not traced by garbage collection system or 
taken into account while detecting unused object replicas. To convert a weak reference to a strong 
reference, one must execute AddRef operation over it. In E1, AddRef method is exposed by the 
garbage collection system, rather than the object itself. As a result of the AddRef operation, new 
strong reference is registered in the garbage collection system. If the replica addressed by the given 
reference does not exist yet, it is created by the Object Registry, as described in Section 5.1. Every 
subsequent AddRef operation increments the value of a counter, associated with the given reference. 
The counter is decremented by the Release operation. When it drops to zero, the strong reference is 
deleted. Deleting the last strong reference to the replica initiates the replica’s removal. 

In each node, the garbage collection system maintains only the information concerning local 
replicas. For each replica, the list of strong references on it, as well as the list of references it holds 
to other replicas, is stored. Both distributed and local references are taken into account. This 
information is sufficient to trace any changes in the reference graph, including those caused by node 
or network connection failures, while the simple references counting does not account for such 
situations correctly. 

The majority of information about the references is stored in the Object Registry. Registries 
in different nodes communicate in order to manage remote references. Besides the Object Registry, 
the E1 garbage collection system includes Reference Monitors located in each domain. Reference 
Monitor carries out reference counting within its domain, which minimizes the number of 
crossdomain calls to the Registry. It exposes the IRefMonitor interface, containing AddRef and 
Release methods. To create and delete local references, application objects interact with Reference 
Monitor, which, if necessary, calls the Object Registry reference management methods. 

Cyclic distributed garbage collection in E1 is based on the partial reference graph tracing 
procedure, which verifies the reachability of some specified replica from Root Object Set [58]. The 
Root Set consists of system objects, which by definition are never regarded as garbage. All objects 
reachable from ROS are not garbage either. All other objects are considered garbage. To perform 
partial reference graph tracing, a suspect replica must be selected using some heuristic procedure. 
This replica will become a starting point for graph scanning. As a result, either reachability of the 
given replica from the ROS will be proven, or a set of replicas forming the garbage cycle will be 
detected. 

Figure 5 shows a reference graph fragment. Solid arrows denote strong references, while 
dashed arrows correspond to weak references. For the distributed object A the client/server 
replication strategy with one primary and one backup server is used. Client replica A2 holds strong 



reference on primary server replica A4, which maintains the object state and performs operations 
upon it. In its turn, A4 holds the strong reference on the backup server А1, which stores a secondary 
copy of the state. Client А2 forwards all method calls to primary server А4, while А4 communicates 
with backup server  А1 to keep it in a consistent state. 

Object B uses an active replication strategy. Each method invocation is broadcasted to all 
replicas, which perform corresponding operations over the local copy of object state. To execute 
these remote invocations, each replica holds weak references on all other replicas (in the figure, 
object B has only two replicas). In the case of active replication each replica has to exist only as 
long as it is used in its local node, and can be safely destroyed afterwards, i.e. replicas do not 
depend on each other. Hence, no replica needs to hold strong reference on any other replica. 

 

 

Figure 5. Reference graph fragment 
 

This example clarifies the semantics of strong and weak references. Strong reference reflects 
the dependent relationship between replicas, that is when some replica (or object) requires another 
replica (or object) for its correct operation. Weak reference is simply a means of interaction. It is 
used when communicating replicas do not depend on each other, and therefore destruction of one 
does not cause the other to malfunction. 

6. Replication 

In Е1 the efficiency of the access to distributed object is determined by its replication 
strategy. The most efficient strategy is usually the one that takes into account the properties of 
particular object or object category. To enable the use of such strategies, Е1 does not impose any 
limitations on the internal architecture of replication object, neither on replication algorithms used. 
Instead, it provides a set of services, helping developer to solve the most complicated tasks, arising 
from implementation of the majority of replication strategies. 

 



6.1. Survey of replication strategies 
This section provides brief description of several widely used classes of replication 

algorithms, which form the basis of the E1 library of replication strategies. The purpose of this 
section is to present an introduction to object replication. For a detailed description of various 
strategies, the reader may consult the following papers [9, 5, 28, 16, 2, 57, 19, 26]. 

 
Client/server replication 

Client/server is a trivial replication strategy. A single copy of the object state is maintained 
by a server replica (Figure. 6). Other replicas are clients. All client invocations are forwarded to the 
server. 

 

Figure 6. Client/server replication 
 
This strategy is in most cases inefficient, since it does not provide local access to resources. 

Another disadvantage is low reliability due to centralized access to objects.  
 

Passive replication  
In the case of passive replication [9,5], each replica stores a copy of an object state (Figure 

7). One replica is assigned as primary. Read operations are executed locally in each node. 
Modifications are forwarded to the primary replica, which executes the required operations and 
updates all other replicas. 

 

Figure 7. Passive replication 
 



Active replication 
Each replica stores a copy of an object state (Figure 8). Both read operations and 

modifications are performed locally in each node. To ensure replica consistency modifications are 
broadcasted to all replicas. 

 

Figure 8. Active replication 
 
Within the framework of active replication a variety of algorithms, providing different types 

of replica consistency (sequential consistency [28, 16], causal consistency [2], temporal consistency 
[57], weak consistency [19], and lazy consistency [26]), have been developed. 

 
Migration 

Migration in E1 refers to the transfer of object replica between nodes. Migration is not an 
independent replication strategy. It is used in conjunction with other strategies to improve the 
efficiency of access to resources by means of load balancing.  

Migrating a replica, without any threads running in its context, is a rather trivial task. 
However, it is sometimes necessary to migrate replicas of objects which have methods that execute 
for a long time or even for the object’s entire lifetime. The E1 port of a traditional UNIX program is 
the example of such an object. Its main() method is called right after the object is created and 
executes until the object is destroyed. Such an object must be moved to a remote node, along with 
all the threads that are executing within it. As mentioned in Section 4.3, Е1 provides for such a 
capability. 

 

6.2. Distributed object replicas communication 
Any non-trivial replication strategy requires some communication layer to organize the 

interaction between distributed object replicas. In Е1, such a layer is provided by the Group RPC 
(GRPC) service, supporting transparent invocation of remote replication objects. GRPC in turn 
relies upon the Group Communication mechanism which supports the exchange of unicast and 
multicast messages with various delivery ordering and reliability properties. 

 
Group communication mechanism 

For the purpose of this discussion, a group is a communication-level abstraction, which 
corresponds to a set of a single distributed object’s replicas. The Е1 group communication system 
includes two main services: group membership service and message delivery service.  

Group membership service maintains consistent group membership lists, or views, for all 
object replicas. It allows replicas to join and leave the group dynamically. In addition, it is 
responsible for maintaining the consistency of the group in the face of hardware and software 
failures, which might cause replicas destruction or group fragmentation. This is a nontrivial task, 
since in an asynchronous distributed environment it is impossible to distinguish a node crash from 



temporary inaccessibility caused by network delays [41]. To overcome this obstacle, one can use a 
distributed algorithm, determining accessible group members and reaching a consensus concerning 
a new group structure among its surviving members [45]. Such an algorithm is implemented by a 
special membership service component – Failure Detector (FD). 

If some of the group members become inaccessible as a result of network partitioning, rather 
than node failures, group fragmentation occurs. In this case, group membership service initiates 
formation of a new group in each fragment. Later on, the fragments may merge into a single group 
again. 

Message delivery service provides primitives for exchanging unicast and multicast messages 
between group members. For each message session, the delivery protocol properties can be 
specified. The most important ones are reliability of delivery and message ordering. Table 1 
summarizes some possible values of these properties.  

 
Property Description 

DELIVERY RELIABILITY 

Unreliable delivery Does not provide any message delivery 
guarantees. 

Atomic delivery Guarantees that each message will be 
either delivered to all its destinations, 
or to none of them 

DELIVERY ORDERING 

Unordered delivery Does not impose any restrictions on 
message delivery order 

FIFO-ordering All messages from a group member are 
delivered in the order in which they were 
sent 

Causal ordering Preserves causal relations [27] between 
messages 

Total ordering Each member receives all messages in the 
same order 

Table 1. Message delivery properties 
 
The development of a group communication system from scratch is a rather complicated 

task, which comprises implementation of message delivery and group membership algorithms. 
Therefore, we plan to build the Е1 group communication system on one of the existing 
implementations. Currently the services described above are implemented in a number of group 
communication systems [6, 40, 3]. Such systems are designed to provide replication support within 
more complex software systems. Therefore they can be relatively easily integrated into Е1. Also, 
being highly modular, they can be easily extended to support new message delivery properties [40]. 

  
Group RPC 

Message-oriented communication primitives form the basis for distributed object replicas 
interaction. However, it is desirable to provide the replication strategy developer with a more 
convenient procedural model, allowing direct access to methods of the remote replication objects. 
In the case of point-to-point communication, the remote procedure call (RPC) mechanism is 
generally used to invoke operations on remote objects. The group remote procedure call (GRPC) is 
the generalization of RPC for the case of multicast communication. On the basis of group 
communication services described above, the GRPC implements a single primitive allowing a 
simultaneous invocation of several remote objects. Figure 6 depicts the architecture of E1 GRPC 
mechanism. 



 

 

Figure 9. Execution of the remote call by GRPC system. 
 
Like regular RPC, GRPC implements remote invocation with the help of client and server 

stubs. Stubs are compiled automatically from the IDL-definitions of objects (see section 7.1). Client 
stubs locally expose interfaces of remote replication objects. Each call to a client stub is converted 
into a message, sent to one or several remote replicas by means of a group communication system. 
The message is delivered to a server stub, which transforms it into a call of an appropriate 
replication object method. The result of the invocation is sent back to the caller’s client stub. 
Having obtained the necessary number of responses (determined by the semantics of the call), the 
client stub returns control to the calling object. 

 
6.3. Change of group structure 

As discussed in the previous section, the group structure can change either when new 
replicas join or leave the group, or as a result of communication or node failures. On the level of 
group communication system such events are handled by group membership service, which delivers 
consistent views to all replicas. The group communication system, then, notifies replication objects 
about the changes in the distributed object structure through the IReplicaGroup callback interface. 
On the level of replication strategy, the handling of this event can involve distributed 
communication between replication objects, including replica synchronization, creation and 
deletion of the remote references and even creation or destruction of replicas. This process yields a 
new distributed object configuration, which meets the consistency requirements, imposed by the 
replication strategy used.   



The following sample scenario of distributed object recovery after network partitioning 
illustrates that the distributed protocol which is handling the changes in group structure is an 
essential part of any replication strategy.  

Initially, an object consists of client replica C, primary server P and backup server B (Figure 
10а). The arrows indicate strong references between the replicas. As a result of the network 
partitioning the object divides into three fragments (Figure 10b). If the replication strategy does not 
provide for a future fragment re-attachment and doesn’t apply any special efforts to preserve object 
integrity, all object replicas will be destroyed: server replicas (P and B) will be destroyed by the 
garbage collection system, since there are no strong references on them; while client replica must 
self-destruct, since it does not store a consistent copy of the object state and therefore cannot 
successfully process incoming method calls. Suppose however, that replication strategy tolerates 
object fragmentation in the following way: in order not to be destroyed by the garbage collection 
system, the primary server replica creates a strong reference on itself from the Root Set (Figure 
10с). Additionally, since the given replication strategy implies the existence of a backup server with 
a secondary copy of the object state, the primary server creates this backup replica. All invocations 
of a client replica will return an error indicating that the object is currently fragmented. Thus, only 
the secondary server B will be destroyed as garbage. If the network connection is subsequently 
restored, the surviving object replicas will remerge (Figure 10d) and continue normal operation. 

 

 

Figure 10. Fragmentation of the distributed object  
 

Note that immediately after fragmentation (Figure 10b), replicas P and B could be destroyed 
as garbage. In order to process these kinds of situations correctly, the notion of transitional 
distributed object state is introduced. As soon as the group communication system notifies the 
replication object of a view change, the replica is transferred into a transitional state in which it 
cannot be destroyed by the garbage collection system. While in transitional state, the object can 



freely change its structure. For example, the object can adjust strong references between replicas or 
create external references, as in the example above. As soon as all required operations are complete, 
the object will leave the transitional state. 

 
6.4. Serialization interface 

This section discusses another important aspect of the distributed object development – 
implementation of the serialization interface. All replication strategies rely on some operations, 
which replication object can execute only in cooperation with the semantics object. The most 
important examples are serialization and deserialization of an object state. Almost all replication 
strategies employ these operations to transfer object state between the replicas and to synchronize 
replicas. Since the replication object is generally unaware of the structure of the semantics object, 
the semantics object must implement serialization operations itself. These operations are exposed to 
replication object through the ISerializable interface. ISerializable is similar to the CORBA 
Checkpointable interface, which also supports object replication [35]. 

In other words, the serialization of the distributed object state is delegated to the semantics 
object developer. Note that the serialization/deserialization procedures are generally rather 
cumbersome. It is therefore desirable to generate them automatically. This is an intricate problem, 
with no general solution, that would work efficiently for all types of objects while being language-
independent.  

Some languages, e.g. Java and C#, provide support for automatic object serialization and 
deserialization, based on run-time type information. We expect that these languages will be widely 
used for application programming in Е1.  

However, along with them, other languages, in particular, C++, should be supported, for 
which automatic object serialization is not generally possible either at the time of compilation, or at 
run-time  [48]. It is therefore desirable to develop a language-independent method for generation of 
the serialization interface. In Е1, the support for automatic objects serialization is provided by the 
memory management system. Each local object consists of a static part and dynamically allocated 
data part. The dynamic memory allocation interface is provided by Heap objects. Heap object 
represents a continuous virtual memory area, upon which allocation and deallocation operations are 
defined. Each domain provides the default local heap, which can be used by all its objects. Besides, 
any object can create a separate heap and allocate memory only from it. To serialize such an object, 
it is enough to store the structure of the heap plus the object’s static part in some data packet. On 
object deserialization, the heap is restored in a new node in the same virtual address. So, the 
problem of serialization and deserialization of the semantics object is reduced to a far simpler 
problem of serialization and deserialization of a Heap object. This approach is language-
independent and can be used for objects of any type. However, it introduces a memory overhead, 
since using a separate heap per object implies that the object’s dynamic data occupies an integral 
number of physical memory pages. 

Figure 11 compares two approaches. Figure 11a shows the serialization of the object, 
developed in a programming language with run-time type information support. Such object uses a 
default heap for dynamic memory allocation. To perform object serialization, language run-time 
components parse its structure by tracing the intra-object reference graph. On deserialization, the 
object structure is restored in the target node’s default heap. This procedure preserves the object’s 
referential integrity, while separate object fragments are placed at virtual addresses, distinct from 
their original ones. Figure 11b shows the serialization of the object, written in C++, and using 
private heap for memory allocation. After deserialization all object fragments are allocated at their 
original virtual addresses. 



 

Figure 11. Two approaches for automatic serialization and deserialization of the 
semantics object. a. Using language run-time support. b. Using a private heap 
for dynamic memory allocation. 

 
If the programming language does not support automatic serialization of the object state, and 

if the use of a private heap for each object results in an unacceptable waste of the physical memory, 
then the object developer should implement ISerializable interface himself. This approach will be 
used for the E1 system objects. 

7. Programming in Е1 

Е1 applications are constructed as a collection of distributed objects. This section briefly 
discusses the methodology of distributed objects development and the tools needed. 

A distributed object consists of semantics and replication objects developed, as a rule, by 
different sites. Normally, an object developer implements the semantics object and specifies one or 
more standard replication strategies, which can be applied to it. In rare cases is the replication 
strategy developed for one particular semantics object. 



Е1 supports the component paradigm of software development. For this purpose, the 
distributed object model is extended by a set of services: Object Registry, Access Control Server, 
Global Naming Server, and garbage collection system. Also included in the Е1 component model is 
the Interface Definition Language (IDL), making posiible binary interoperability of components 
written in various programming languages. Figure 12 illustrates the C++-based development cycle 
of a distributed object. Object development is carried out by two sites – the site implementing the 
replication strategy, and the site implementing the semantics object, i.e. the component developer. 
The semantics object developer prepares the IDL-definition of object interfaces, using which the 
IDL compiler generates abstract C++ classes from which object implementation is inherited. The 
IDL-definition of the object contains the following information: 

• definitions of the data structures used as parameters or return values by the object 
methods; 

• unique class and interface identifiers; 
• interface declarations: method names, types of arguments and return values, directional 

attributes and additional meta-information which can be used by the Replication 
Strategies Compiler. For example, method declaration can have one of the ([read], 
[modify]) attributes. 

Replication strategy can be implemented independent of the semantics object. However 
replication object can not be compiled until the information about the interfaces of the specific 
semantics object is available. This contradicts the existence of universal replication strategies, e.g. 
active replication, which can be applied to various objects. To alleviate this contradiction, the 
replication strategy is described using a special scripting language denoting the semantics object’s 
interfaces and methods by some abstract identifiers. When the replication strategy is applied to a 
certain class of semantics objects for the first time, the appropriate replication object is compiled on 
the fly from the replication strategy description and the semantics object’s IDL-definition by the 
Replication Strategies Compiler (RSC). Besides replication objects, the RSC generates GRPC-
stubs, that are required for communication between distributed object replicas. 

 



 

Figure 12. Development cycle of a distributed object 
 
The distributed objects can be developed not only in C++, but also any other programming 

language, which can be mapped to the E1 object model. 

Conclusions 

We have presented the architectural design of the Е1 distributed operating system. In E1 the 
abstraction of the replicated distributed object is used as a building block for both operating system 
components and application software. Since distributed object’s interfaces are globally uniformly 
accessible across the network, the distributed nature of the system is hidden from application 
developers and users. Selecting replication strategy for each object on the basis of its semantics 
allows achieving efficient access, while providing the required degree of reliability. The internal 
architecture of the distributed object effectively separates its semantics and replication algorithm, 
which actually reduces the task of distributed object development to the development of a local 
(non-replicated) object. 



Distributed object access protocols are implemented by the developers of replication 
strategies. Most replication strategies are universal, i.e. can be applied to objects of various types. 
However, the replication strategy can be designed for a particular type of objects, which allows to 
maximize the efficiency of access by taking type-specific properties into account. Е1 provides 
support for the replication object development, including group communication system, and object 
persistence. 

Е1 runs on top of a microkernel which supports a minimal set of primitives like address 
spaces, threads, IPC, and interrupts dispatching. All operating system and application functionality 
is implemented by distributed objects. We believe that microkernel-based architecture improves 
modularity and reliability of the system, as well as reduces control transfer costs via the kernel, 
which is especially important for the systems oriented at intensive communication of medium-
grained objects. 

All Е1 objects reside in a single virtual 64-bit address space divided into isolated protection 
domains. Addresses of the object interfaces serve as globally unique identifiers, using which object 
can be invoked from any network node. Such virtual memory organization provides convenient 
object communication environment. 

The Е1 execution model is based on the migrating threads concept. In E1 a thread is not 
permanently bound to any specific object or domain, but transfers execution between objects on 
method calls. The Migrating threads model simplifies object development, results in more 
lightweight objects, and improves the efficiency of object communication. 

Following the current trend towards component software, E1 provides support for 
component-oriented programming. Development and use of components require a component 
model, defining a set of services, interfaces and conventions, all of which constitute the execution 
and communication environment for components. Current component models are usually 
implemented as middleware systems. In contrast, E1 implements component model by extending 
the distributed object model with component-oriented services and tools, thus avoiding the use of an 
additional software layer. Besides being highly efficient, such architecture simplifies the 
development and use of components, since in E1 distributed objects (or components) are first-class 
citizens, like files in UNIX. The E1 component model provides services for object protection, 
global object naming, dynamic class loading, garbage collection, as well as component 
development tools like IDL compiler and replication strategy compiler. 

Further work on E1 includes extending the presented architecture with support for object 
persistence. After that we plan to proceed to implementation of the first E1 prototype and its 
subsequent analysis. 
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